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ABSTRACT

The MQS system is an integrated multicomputer system which was
designed to preserve the standard UNIX interface while providing com-
plete network transparency. This thesis measures and analyses the perfor-
mance of the internal mechanisms of the system, including all of the sys-
tem calls, interprocess communication mechanisms and process migra-
tion. Several distributed application programs, the most successful of
which show an almost linear improvement in performance as the number
of processors increases, are also analyzed.
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Chapter 1
Introduction

Distributed systems provide transparent access to remote objects, e.g. files or programs, and
allow user applications to simultaneously utilizc the processing power of all of a system’s proces-
sors. For a distributed system, the performance of remote operations, e.g. remote procedure calls
or a memory mapping mechanism between local and remotc machines, determines the feasibility
of the distributed system itself and the feasibility of other mechanisms. Measuring the perfor-
mance of a system’s mechanisms has two benefits: it highlights the weak points of the system for
the system designers and it provides the data needed by users to predict the performance of appli-
cations which they want to run on the system. This thesis deals with measuring and analyzing the
kemnel mechanisms of the MCS mulicomputer operating system and several application pro-

grams which run on MOS.

MOS [1-6] is a Multicomputer Operating System which integrates a cluster of loosely con-
nected computers into a single machine UNIX environment. The system uses decentralized
mechanisms to provide a network transparent fiic system, dynamic process migration and load
balancing. The kemel of MOS is divided into three parts: the upper kernel, the linker and the
lower kernel. The upper kernel provides users with the standard UNIX interface. The lower ker-
nel contains all of the routines which handle local resources. Eventually, the upper kemel calls
the relevant lower kernel procedure via the linker which determines whether the call can be exe-
cuted locally or needs to be sent to a remote machine. Remote system calls which need to return
data othcr than the retum value use the funnel mechanism which maps memory from a local

machine to a remote one.

System calls define the basic interface between the user’s programs and the operating sys-
tem. In MOS, system calls can be divided into three groups: system calls with no remote imple-
mentation, system cails with remote versions which use the funnel mechanism and system calls
with remote versions which do not use the funnel mechanism. In Chapter 3, benchmarks are used
to determinc the slowudown associated with cach remote kemel system call: computed as the
elapsed time required for the remole execution of the call divided by the elapsed time required for
the local execution. It should be noted that the design of the MOS kemel allows for certain sys-
tem calls to be cxecuted locally regardless of the current position of the calling process. We
present results which show the weighted average (by frequency of the system calls) to be 240%.
The same technique was used by Leffler ¢t al and McKusick et al [7, 8] to measure the perfor-

mance of system calls of Berkeley UNIX sysicms and by Cabrera et al [9, 10] to analyze the
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network throughput of 10 related system calls on a Berkeley UNIX system. While comparing
results gained on different machines is of dubious value, in Douglis and Ousterhout [11] the
measured slowdown of process related remote system calls in the Sprite system was approxi-

mately twice that of the corresponding MOS system call.

In Chapter 4, we measure the slowdown factor associated with the interprocess communi-
cation (/PC) related system calls. The cost of the IPC is a critical factor in determining the perfor-
mance of distributed applications. The IPC mechanisms used in MOS show a similar slowdown
factor to the general system calls. The measurements proved the importance of using a distri-
buted IPC mechanism: centralized mechanisms, like the current initial of AT&T System V mes-
sages, which store messages on one machine, create a serious I/O bottleneck which hinders the
scalibility of-distributed applications.

A unique feature of MOS is its dynamic process migration by the automatic load balancing
mechanism. In Chapter 5, we dcscribe the performance of the implementation of the funnel
mechanism since it is the basis of the process migration mechanism and then the speed of process
migration itself. The best result obtained showed the funnel throughput to be 164 Kbytes/second.
The results presented in [10] show the maximum network throughput over ethernet to be
188Kbytes/second with an unloaded VAX11/780, a processor almost twice the speed of the MOS
MC68010 based node, and an unloaded Ethemet.

In Chapter 6, the speedup factor of distributed applications is measured when run on the
MOS system. The speedup factor is computed to be the minimum run time the application
requires on a one processor system divided by the run time on an n processor system. An appli-
cation which does a large amount of 10 (each operation requiring a remote system call) is more
difficult to distribute since each of the system calls suffers a slowdown. On the other hand, an
application which does heavy computation, does not perform many system calls and does not
show a degradation in performance on a remote node. For example, an application which spends
9 seconds running in user mode and 1 second system time can expect to gain a specdup of at best
(9 / number of processors) + 2.4, where the measured slowdown of system calls is 240%. The
first application, a parallel version of the UNIX make, does a large amount of disk IO as well as
computation. By distributing the temporary files crecated by each of its subtasks betwcen the
working nodes at random, a spcedup of 60% of the optimal was measured. The second applica-
tion is an distributed implcmentation of the Traveling Salesman Problem [12], a CPU bound

problem that does relatively little message passing. For all but the smallest instances of the prob-
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lem, a nearly linear speedup was obtained (the speedup with 7 machines being 88% of the
optimat).

This thesis is organized as follows. Chapter 2 describes general properties of distributed

systems and gives a overview of the kernel structure of the MOS system. Each of chapters 3

through § describes the performance of one mechanism of the MOS system. Chapter 6 describes

the performance of two application programs and Chapter 7 draws conclusions.




Chapter 2
The MOS Multicomputer System

2.1, Introduction

An integrated multicomputer system is a collection of computers which run a single, homo-
geneous operating system and can communicate through a common network. The basic goal of
such systems is providing each computer access to non-local resources, such as files or remote
processing power. Some such systems, like Locus [13], are composed of heterogeneous
machines. The systems discussed in this paper are homogeneous systems in that all of the
machines (nodes) are required to have the same instruction sets. n this section, only systems

which support the UNIX interface are used for comparison.

2.2. Typical Features of Distributed UNIX Systems

The above definition of muiticomputer systems is quite general and includes a multitude of
different types of systems. In practice, distributed systems can be identified as systems which
provide some subset of the features described in this section. Later chapters analyze the MOS

distributed operating system’s implementation of these features.

Network file systems provide a system's users access to recmote files and have become
increasingly popular in recent years. Most UNIX based distributed file systems provide user tran-
sparent access to remote files. That is, the user need not be aware of the location of a file as long
as he or she knows the UNIX path 1o the file which is a system wide identifier. In UNIX, the ker-
nel procedure namei maps a pathname to a unique file header, called an inode, which contains a
description of the file and its location. The namei procedure must be modified in a distributed
system to handle thc remote filc names. Some systems employ a universal super-root to tic the
various file systcms into a single tree while others provide arbitrarily placed remote namespace
escapes, which point to the inodc of some directory on a remote machine. This tums the standard
UNIX tree into a general network wide graph. For a more comprchensive discussion of network

file systems sce [6].

Distributed systems have several mechanisms for allowing processes to communicate
across the network. Remote procedure calls (RPC’s) are an extension of gencral procedure calls
which allow a process to exccute certain procedures on a remote node. The advantage of a RPC

is its ease of use: no change in programming style is required, except for the change in syntax
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required to specify where to run the procedure.

Message passing, the second mechanism, is a more radical break from standard program-
ming in that messages allow multiple, concurrent threads of execution. Programmers are pro-
vided with a set of procedures to send and receive messages. Message passing is a central
mechanism in server/client based systems and has a significant influence on the performance of
such systems [14]. Both of thc above mechanisms provide some access to the processing capabil-

ities of remote nodes.

The throughput of a distributed system, i.e. the number of job completions in a given period
of time, can be improved by load balancing. Load balancing algorithms can be divided into two
major classes: static algorithms and dynamic algorithms. Static load balancing algorithms assign
a new process 10 a processor upon its creation. The process continucs executing on this node
regardless of how the load distribution changes during is life time. Dynamic load balancing algo-
rithms allow a process to migrate 10 a less loaded node if the distribution of the work load
changes during the executicn of the process. In load balancing systems, the performance of the
various distributed mechanisms is taken into consideration when deciding whether to migrate a
process from its original node. A detailed survey of various load balancing schemes is given in

[15]).

2.3. The MOS System

The MOS system [1-6] is a loosely coupled, integrated multicomputer system which was
designed to preserve the standard UNIX interface while providing completc network tran-
sparency. Each node is completcly autonomous and supports the classic UNIX interface. The
amount of memory, processor speed and the number and type of peripherals may vary from one
node to the next. The MOS configuration that was uscd in the current work is a collection of
Cadmus QU68000’s which are bascd on the Motorola MC68010 processor and are connected by
Pronet, a 10 Mbits/second token passing ring. In addition, cach machine has one megabtye of

main memory and an 80 megabyte disk.

2.3.1. MOS System Architecture

The kemnel of the MOS operating system is divided into three parts: the lower kernel, the
linker and the upper kernel. The iower kemel coniains device drivers for the local node and all of
the routines which access file and process structures. It is tightly coupled to the local node and

can access only local objccts or objects that have migrated to the local node. The upper kemel
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provides the standard UNIX system call interface. When a process executes a system call, the
upper kemel performs the preliminary processing of the parameters, e.g. calling namei to parse a

path name into a universal inode or checking that the user has permission to access a certain

object. Eventually, the upper kemel calls the relevant remote kemnel procedure (or scall) to com-
plete the service. For example, the call Sproc_name( machine_id, param_list ) invokes the
remote kemnel procedure ‘‘proc_name’’ with the parameters specified in ‘‘param_list’’ on
machine ‘‘machine_id"’.

At this point, the Scall is passed to the linker which decomposes the scall into the procedure
name and the parameter list. The linker examines the parameters of the call to determine if the
call needs to be exccuied remotely. If it is remote, the linker encapsulates the call into a message
and sends the message over the network. If the call can be executed locally, the linker invokes
the local lower kemel procedure directly. On the target machine, an ambassador process, a light-
weight kernel process, executes the appropriate lower kemnel procedure for the calling process.
The result of the system call is then encapsulated into another message and retumned to the calling
node. Remote system calls which nced to transmit large amounts of data in addition to the return
value of the RPC use the MOS funnel mechanism to copy the data from the memory space of
one machine to another. The linker handles the implementation of funnels by breaking up large
blocks of data into message size pieces at one ¢nd, sending the messages over the network and
then reunifying the data in the proper order on the target machine. The data is then copied by the

linker of the receiving node to the specified memory address.

For example, for the read system call, the upper kemel scts up an input funnel on the local
machine before calling the Sread remote system call. If the system call accesses a remote file, the
linker routes the call to the target machine and an ambassador process there calls the appropriate
kemel procedure for reading a file. As cach logical file block is rcad. the data is placed into the
remote end of the funnel and passed back to the initiating machine’s linker. After the call com-
pletes, the returned status of the system call is cncapsulated by the remote linker and passed back

to the calling machine.

2.3.2. The MOS File System

The MOS file system is bascd on the standard UNIX file system tice. The original MOS
file system used a super root, *‘/..."", as a network wide root. When addressing a file on a remote
machine, the user prefixes the super root to the machine name and then adds the usual UNIX

path. For example, "/.../m2/etc/passwd" is the absolute path name for the password file on
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machine number two. In the version of MOS measured in this work, a new scheme uses a special
file type which indicates the remote machine number in its inode. When such an inode is
accessed by the kemel, the inode of the special file is automatically replaced with the inode of the
root directory of the remote node indicated. For example, if the special file ““/usr/systems/bert’’
is created as a remote escapc to the file system on machine two, the path
“‘/usr/systems/bert/etc/passwd’’ refers 1o the password file on machine two. Note that this
change climinates the need for speciai, non-standard UNIX pathname syntax. Alse, it allows the
MOS file system to have arbitrarily placed links between nodes.

In MOS, the inode of an open file is held by the site at which the file resides. All remote
opens arc returned a universal pointer to the inodc. a universal inode, which is used for future file
accesses. A garbage collection algonthm is used to clean up allocated inode structures in the case

of a failure of the host node or of the calling node.

In order to allow for dynamic reconfiguration of the system, e.g. the removing or adcing of
new machines at any given point in time, each remote access gencrates a new remote kernel call
which returns a special error code if the node is currently unreachable. The system does not
require any special action to incorporate a ncw node: upon the first remote call to the newly
joined node, the system simply sends the message to it in the usual way and the connection is

created dynamically.

23.3. MOS Load Balancing

In MOS, load balancing is carricd out by dynamic process migration [2]. As a result of the
system architecture, a MOS process is not sensitive to its physical location: system calls which
access resources that are not located on its current node are automatically forwarded by the linker
to the remotc node. The case with which processes may migrate in the system allows dynamic
load balancing tc be implemcented. In MOS, each node sends its own local ioad estunaie to a set
cf randomly selected nodes every tixed amount of time (every second in the current implementa-
tion). Load estimates reccived from other processors arc kept in a load vector and are ““nged’’ to
reficct their decreasing relevancy. Every processor may refusce 1o accept a migrating process if it
30 desires and cach piocessor accepts at most one incoming process during one load balancing
cycic. Tie load balancing algorittuin may migrate a process which has used at least 1 second of
CPU ume on the lecal processor. Processes which have a history of **forking’’ new processes arc
given preference by the algorithm which chooses a process for migration.  Also, processes with a

history of I/O operations 1o soriic specific remote node are considered for migration to that node.




2.4. Rela.cd Systems

Distributed UNIX systems, in the broadest sense of the definition given at this chapter, are
quite popular. In order to reduce the clarify the relative merits and weaknesses of MOS, the fol-
lowing gives a brief description of a handful of the more widely known systems which have some

aspects in common with MOS.

The Masscomp RTU system provides users with a real time variation of UNIX [16]. It has
a distributed file system which was built on a transaction based reliable data protocol. The
Masscomp approach to the distributed file system is quite similar to the MOS approach: an rinode
is used as a universal pointer to the inode of an allocated file. The RTU kemel, like the MOS ker-
nel, routes standard UNIX system calls to a remote host when necessary. The system was not

designed to allow process migration or load balancing.

The SUN distributed system, SUNOS, is built around a general purpose remote procedure
call mechanism [17, 18). Unlike MOS, where remote procedure calls are made only by the ker-
ncl, processes have access to the remote procedure mechanism. The SUN Network File System,
or NFS, is implemented through use of kemel level RPC calls. NFS provides transparent access
to remote file systems which may be ‘‘mounted’’ at arbitrary points in the file system tree.
SUNOS incorporates heterogencous machines into a distributed file system. As a result, it can

not support process migration and load balancing.

In Sprite [11], as in MOS, processes can migrate dynamically. Each process has a unique
home node which handles all location sensitive system calls, e.g. calls which return the current
time. The home of a process is always the same as its parent process which means that each node
must handle such system calls for its original processes and all of their descendents. As in the
other systems mentioned, recmote system calls are implemented through use of a remote pro-
cedure call mechanism. As in MOS, the RPC is a kemel to kerncl mechanism. The RPC facility
has been uscd to construct a transparent distributed file system. Universal pointers to open files
are migraicd with the process from onc node to another. has a significant influence on the perfor-

mance of the system.




Chapter 3
Performance of Remote System Calls

3.1. Introduction

System calls detine the basic interface between the user and ihe operating system. The
overhead associated with the remote execution of system calls has a significant influence on the
performance of the system. In MOS, system calls can be divided into three groups: system calls
with no remote implementation, system calls with scall versions which use the funnel mechanism
and system calls with scall versions which do not use the funnel mechanism. After a brief
description of the measurcment techniques used, the chapter goes on to describe the performance
of each of the types of system calls and the overall influence of remote system calls on a the per-

formance of processes.

3.2. Measurement Technique

The remote system calls overhead was measured by running a set of benchmarking pro-
grams. Each benchmark measures the elapsed time required for local and remote execution of a
system call that has a remote implementation. Each system call is executed 10,000 times on
objects located on the local node and 10,000 times on remote objects. The system calls measured
are all part of the standard UNIX interface. Some system calls were not measured, such as mount
and umount, since these operations are relatively infrequent and the slowdown can be cxtrapo-
lated from the results for similar system calls that were measurcd. The measurcients were done
when the remote and the local nodes were running in single user mode to reduce interference
from uninvolved processcs. As a side nole, several system calls were carried out with up to
100,000 iterations. Howcver, as rcported in a related work by [9], the times do not change
significantly as the number of iterations increase, so all mcasurements arc based on the average

time of 10,000 calls.

System Calls without a Scall Version

Several system calls in the MOS system have no nced of a corresponding remotce version

since the call does not require access to objects at a location dependent site. For example, the

standard “‘time’ UNIX system cail retums the current time. Since the time is synchronized
between active MOS sites. this system call can always be handled by the kemel where the process

is currently running. As a result, no performance penalty is paid for calling such a system call

e
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regardless of the location of the process.

System Calls with Funnels

Read and write, UNIX's input/output interface, are two of the most frcquently used system
calls. The scall versions use funnels to transfer the data to be read or written to and from a

remote machine. In order to execute a single remote read system call, MOS docs the following:

. The upper kerael routine, read, is called. It does elementary checking of the parameters,
calls a kemel procedure which maps its file descriptor into a universal inode pointer, sets up
its end of an input funnel and then passes the universal inode pointer and the other parame-

ters to the local linker.

. The linker checks to see where the call needs to be executed. If it is a remote call, the linker
encapsulates the parameters into a message and sends the message over the network to the

target machine.

. On the remote machine, an ambassador process receives the message, sets up the remote

end of the funnel and then executes the corresponding lower kemnel procedure.

. A lower kernel procedure (read!) converts the universal inode pointer into a local inode and
passes the inode to another lower kernel procedure, readi, which does the actual reading of

the file.

. Until the requested amount has been read, readi reads one logical block at a time from the
file and places the block in the funnel which causes the linker to encapsulate the block into a

message and send the message over the network to the requesting node.

. The lower kemel finishes its work and passes control back to the ambassador. The ambas-
sador encapsulates the rcturn status of the call into a message and sends the message back to
the requesting machine’s linker.

. The linker and the upper kemel finish their part of the work on the requesting machine and

pass the result back to the user.

In summary, the remote rcad causes the {following messages to be sent over the network:
one to initiate the call, one to retum the exit status and one funnel message for each logical block
read from the file. Due to the unreliable nature of the network, each of the messages sent also

incurs ihe cost of an acknowledgement.

The results prescnted in Table 3.1 shows the cost of sequentially reading a regular file,

using diffcrent buffer sizes. The sccond and third columns show the measured results of local and

———— e |
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remote execution of the system call. The last column shows the slowdown factor which is
obtained by dividing the remote execution time by the local executicn time. This figure shows,

as one would expect, that larger read requests suffer less when executed remotely.

Size Read Elapsed Time (ms) | Elapsed Time(ms) | Slowdown
for Local Read for Remote Read Ratio
2 bytes 2.20 10.00 455
8 bytes 2.33 10.40 4.46
32 bytes 2.40 10.60 441
128 bytes 3.20 11.80 3.69 |
512 bytes 7.20 15.80 2.19
1024 bytes 9.25 20.50 222
! 2048 bytcs 14.23 37.48 2.63

‘Table 3.1 - MOS Read System Cail

Note that the logical block size of the MOS file system is 1024 bytes. The above table
shows that the elapsed time required to read onc logical block from a remote file is approximately
11 milliseconds more than the time required to write one logical block to a local file, a slowdown
of 2.22. Since the linker is forced to send at two packets for a 2048 byte buffer, the overhead
increases to approximatcly 23 milliscconds and the slowdown factor increases to 2.63. The
results for the write system call, not shown here, are similar with a slowdown ratio of 2.55 for a

1024 byte remote write.

In Table 3.2, a more detailed look at the read system call is presented. The measured exe-
cution times and the communication overhead incurred by the use of the scall mechanism for the
read system call arc shown. The second and fifth columns show the measured times for the local

and rcmote exccution of read.
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Buffer Elapsed Time (ms) Local Remote Elapsed Time (ms)
Size for Local Read RPC Overhead | RPC Overhead for Remote Read
2 bytes 220 6.65 6.32 10.00
8 bytes 233 6.68 6.24 10.40
32 bytes 240 6.84 6.46 10.60
128 bytes 3.20 7.13 6.11 11.80
512 bytes 7.20 8.15 4.26 15.80
1024 bytes 9.25 9.48 4.83 20.50
1536 bytes 14.04 12.93 7.04 30.57
2048 bytes 14.23 15.23 9.54 37.48

Table 3.2 - Breakdown of Remote Read

The local and remote communication overhead times were measured by using two ‘‘load
sink’’ processes. First, the amount of work performed by the load sink process was measured
during a fixed time interval on each of the unloaded nodes. This was compared to the amount
done while the benchmark was running. The cost incurred by each node was calculated to be the
amount of milliseconds *‘stolen’’ from the load sink processes during the running of the bench-
mark. The remote RPC overhead is the amount incurred by the remote node minus the amount of
time required to perform the actual system call. Therefore, in order to get an estimate of the
remote communication overhead, the amount of time required to perform a local read system call
was subtracted from the total measured amount. The result is slightly lower than the actual over-
head since the processing of the upper kemel portion of the system call, done by the local node, is

also subtracted from the remote cost.

The local node’s overhead in a remote read involves executing the upper kemnel portion of
the read system call and the work done by its linker in initiating and managing the local end of
the message passing. Similarly, the remote linker is responsible for most of the overhead paid by
the remote node. The local overhcad is quite similar to the remote overhead. The minimum
elapsed time requirced for a remote scall is the sum of the Maximum( local overhead, remote over-
head ) and the local execution time. On the other hand, if the two processors execute their part of
the overhead scquentially, the worst possible case, the remote execution elapsed time would be

the sum of the three. In Table 3.3, the columns show the minimum expected remote execution
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time, the measured (elapsed) time required for execution of the scall and the worst expected exe-
cution time. The percentage of the parallelism achieved in handling the remote and local por-

tions of the scall is computed from these.

I

Bufler Minimum Measured Remote Maximum Percent Paraliclism
Size Predicted Time Time } Predicted Time Achicved
2 bytes 8.52 10.00 1517 297
8 bytes 8.57 | 10.40 15.25 242
32 bytes 8.86 10.60 15.70 25.5
128 bytes | 9.31 11.80 16.44 12.2
512 bytes 11.46 15.80 19.61 0
1024 bytces 14.08 20.50 23.56 0
1536 bytes 21.08 30.57 34.01 0

| 2048 bytes 23.77 3748 39.00 0

Table 3.3 — Remote Read: Parallelism Achieved

There are several ways to reduce the overhead involved. First, the percentage of work done
concurrently by the two machines involved should be increased as much as possible. This can be
done by using the initial message packet sent over the network to “‘piggyback’’ some part of the
data that needs to bc sent. In this way, the remcte linker can start transferring data immediately
after receiving the request message. Another possibility is to lock the calling process in memory
so that the networking hardware can transfer the data directly to the user memory space.
Although the current MOS implementation does niot incorporate these features since they require
a greater consumption of main memory, the newest MOS system docs incorporate similar over-
hzad reducing measures. Additional reductions in overhead can be achieved by using hardware
which provides a reliable delivery medium with checksunis and automatic acknowledgements,
thus relieving the processor of the burden.

An example of a system call that uscs junnels is the exec call which uscs funnels to transfer
an cxccutable file from a remete machine. In Table 3.4, the first job cxecuted by the exec call has
1o da region aad exits immediately. This demonstrates that the amount of time required to set
up 2 ncw process is quitc substantial. The second jeb has a data region the size of the standard
UNIX text editor, vi, and also exits immediately. As the tabie shows, the overhead associated

with the remcete exec call is quite Iow,
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Size of Elapsed Time (ms) Elapsed Time(ms) Slowdown
Process execed | for Local Execution { for Remote Execution Ratio
1,586 bytes 100.00 137.00 1.37
257,586 bytes 257.00 275.00 1.07

Table 3.4 — MOS Exec System Call

System Calls without Funnels

Most system calls involve only the transfer of the parameters and the return of the result, so
that no use is made of the funnel mechanism. For example, the namei kemel routine performs
one reniote i)mcedunc call for each remotc segment of a pathname. As a result, remote system
calls like access and stat which spend a large portion of their execution time in namei pay heavily
for remote execution, especially for files with long pathnames. In general, *‘short’’ system calls
pay a heavier penalty in terms of percentages since the overhead is a substantial part of their run-
time. Thus, short system calls like Iseek, which simply changes the value of the offset pointer in
a file descriptor structure, also pay a heavy penalty for remote execution. The *‘heavier’ system
calls such as open/close show the most favorable performance since the time required for local
cxecution of the calls is already substantial. An extreme example of a heavy system call is sync

which flushes the buffer cache associated with a certain device to disk.

Table 3.5 presents the measured results for commonly used system calls. Four system calls
were measured in pairs: open and close were onc pair and link and unlink were the sccond. In the
first case, the two calls were paircd due to the limitation on the number of open files allowed per
process. In the second case, creating several thousand links, although possible, causes a severe
degradation in performance as the number of links increasc due to the linear scarch that must be
performed on a directory. In both cases, the paired calls are often used together so the cumulative

results arc relevant for normal programming.
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Name Elapsed Time (ms) Elapsed Time(ms) Slowdown
for Local Execution | for Remote Execution Ratio

access 14.10 41.05 291
chmod 29.24 71.30 244
chown 26.26 71.26 271
dup 234 1134 4.84
ioctl 1.66 9.62 5.80
link/unlink 66.70 133.95 2.01

F]seek 1.15 572 4.97
open/close 37.00 83.00 2.24
stat 14.8 43.5 2.94

L sync = 12.35 N 16.35 1.32

Table 3.5 — MOS File Related System Calis

Table 3.6 presents the results for process related system calls. As noted for the file system
related calls, the ‘‘lighter’” sysiem calls for processes are also heavily penalized in remote execu-
tion. Note that many process related system calls, including calls like fork, ncver involve remote

resources and thus have no scall versions.

Name Elupscd Time (ms) Elapsed Time(ms) Slowdown
for Local Execuiion | for Remotc Execution Ratio
]
chdir 24.12 63.38 2.71
chroot 9.55 23.95 2.51
kil 4.10 7.70 1.88

Table 3.6 — MOS Process Related System Calls

3.3. Overall Performance of Remote System Calls

A reascnable estimate of the overall penalty that a process pays while exccuting remotely is
aweignted average: the siowdown 1actor measured for cach system call is muliiplicd by its rela-
tive use in a standard UNIX cnvironment. The numbers usced in Table 3.7 arc basced on statistics

gathercd in [11] for a standard 4.3bsd UNIX system for the most frequent system calls.
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Name Percentage of Calls | Has Scall Version | Effect (Percent * Slowdown)
read (1k bytes) 41.0 yes 91.0

close 17.5 yes 39.2

open 16.3 yes 36.5

write (1k bytes) 15.3 yes 39.0

fork 2.7 no 2.7

exit 2.7 no 2.7

exec 2.2 yes 3.0
create 1.2 yes 1.6

Total : 98.9 240 percent

Table 3.7 — System Call Weighted Average

Since each process has a unique mix of system calls, the above result provides only a rough
prediction of the system time slowdown. Many processes spend a major part of their execution
time running in user mode which does not suffer a slowdown due to remote execution. Chapter 6

shows benchmark results from such applications that show an almost linear speedup.




Chapter 4
Interprocess Communication Mechanisms

4.1. Introduction

In order to utilize the processing power of a distributed systern, a distributed application is
broken into several subtasks which can run in paralle} on different machines. On a UNIX system,
such distributed applications have scveral drawbacks. The first drawtack is the ‘‘heavy'’ nature
of a UNIX process which typically takes scveral hundred milliscconds to crcate. One way to
avoid this cost is to circumvent the UNIX process creation and handiing mechanisms altogether
by using lz'glgt weight processes as is done in the MOS Distributed Lightweight Processes project
[19]. Secondly, in addition to the time rcquired for the computation of the task, each of a distri-
buted application’s subtasks must use some form of interprocess communication (IPC) mechan-
ism to communicate with the other processes working on a given task. The overhead associated
with IPC is a critical factor in determining the performance of a distributed application [14]. For
example, if the amount of communication between processes is zero, as is the case with unrelated
user processes on a general purpose system, distributed systems can gain impressive speedups.
On the other hand, if a group of processes spend most of their time in communication and little
time in computation, using a distributed approach can actually increase the overall time needed

for computation.

In [20], Watson defines the following desired characteristics for a distributed system’s IPC

service:

. No apriori restrictions should be placed on which processcs can communicate with which
others. Processes should see the same IPC interface whether they are communicating with
local or remote processes. Local host or nctwork idiosyncrasies should be largely or com-

pletely hidden.

. Symmetric communication should be supportcd between equal and autonomous partners.
Each partner must have full control over its interaction with the other, deciding when it is
willing to communicate. how mucn of its resources it is willing to allocatc to a given

cciaversation and what cvents it is willing 1o be blocked on uniil they occur.
. Efficicnt transaction and strcam cricnted styles of communication should be supported.

. No restrictions should te placed on the lengths or contents of the basic Loaiuigful aies-
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sage.

. The basic IPC service should not limit or bias the direction of the higher level programming

or application IPC may take.

In the MOS system. these subtasks are handled by separate processes which arc spawned
with the fork system call. The load balancing mechanism automatically distributes the processes
between the available nodes which provides real paraliel execution. This chapter analyzes the
cost of two standard UNIX IPC mechanisms that the MOS system provides: pipes and AT&T's

System V2 messages.

4.2. The UNIX Pipe Mechanism

In UNIX, a pipe is uscd to transfer data between related processes in a first-in-first-out
manner (F/FO) [21). Pipes are implemented as a pair of file descriptors which are returncd by the
pipe system call. All transfer of data o and from a pipe is done with the standard read and write
system calls, regardless of the location of the communicating process. Writing to one of the file
descriptors puts data into the pipe while reading from the other takes data out. Since UNIX
mechanisms only allow sharing of open file descriptors between a process which opens the pipe
and its children or between the children of such a process, the standard UNIX pipe mechanism
does not provide a general purpose IPC mechanism. Pipes are finite: processes which try to write
too much data (over 2048 bytes in MOS) into a pipe must block until the pipe has been emptied
by a reader process taking out data from the other end. Since processes which try to read from an
empty pipe are blocked until a writer process fills the pipes, the pipe mechanism can be used to
synchronize processes. At the lowest level, pipes are built as a special type of file which means
that it uses the standard lower kemel mechanisms for manipulating data buffers and inodes. In
spite of their limitations, pipes are the only IPC mechanism that is available on every type of
UNIX system. They provide scveral of Watson's [20] desired features in that the messages
passed bctween processes are not restricted in size or content and the interface routines are not
location sensitive. Pipes are quite useful in distributed applications since a parent process is typi-
cally used to spawn subtask processes, coliect and then process the results of the subtasks’ com-

putations into a final answer.

4.3. The MO3 Pipc Mechanism

The metitods described in Chapter 3 to measure system calls were used to measure the per-

formance of the pipe mechanism. The following tablc shows the elapsed time and the associated
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slowdown for sending messages of size bytes. An additional pipe was used to synchronize the
reader and writer processes. The measured interval starts with the writer process sending the first

message and ends when the receiving process reads the last message.

Size Elapsed Time (ms) | Elapsad Time(ms) | Slowdown
for Local Writc for Remote Write Ratio
Z bytes 4.84 11.09 229
64 bvtes 5.03 11.42 2.27
128 bytes 4.82 11.95 2.48
512 bytes 5.94 14.81 2.49
1024 bytes 6.55 18.47 2.82
2048 bytes 9.94 28.58 2.88

Table 4.1 — MOS Pipe Mcchanism

The amount of time required to pass messages between two local processes, in the worst
case, should be the sum of the time required to write the same size buffer to a regular file and the
time required to read that size buffer from a file. For the smaller messages, the results are quite
close to this worst case scenario since the write process writes uninterrupted until it fills the pipe.
A context switch then occurs and then the reader process empties the pipe and the cycle starts
again. Wnting to a pipe proves itsclf to be more efficient than writing to a file as the size of the
message increases, since the pipe mcchanism does not write data to the disk or deal with indirect

blocks which UNIX uses to implerment iarge files. This result is shown in Table 4.2.

The remote test case involves a local writer process and a remote reader process. Both
processes communicate through a pipe which is crcated on the writer process’ machine. The
worst performance would occur when both processes exccute serially: the elapsed time would be
equal to the sum of the required to perform a local write and a remote read (as shown in Chapter
3).

o g
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Size Elapsed Time (ms) | Elapsed Time(ms) Sum Elapsed Time(ms)
for Local Write for Local Read for Local Pipe
2 bytes 2.22 2.22 4.44 4.84
128 bytes 3.33 3.2 6.53 4.82
512 bytes 5.83 7.2 13.03 5.94
1024 bytes 8.92 9.25 18.17 6.55
2048 bytes 16.5 14.23 30.73 9.94

Table 4.2 — Comparison of Local Pipe and File /O

As shown in Table 4.3, the rcmote pipe is considerably faster than this for all messages greater
than two bytes in size. In fact, the performance of the pipe mechanism in the remote case is actu-

ally better than that of an equivalent read from a remote fiie in most of the cases.

Size Elapsed Time(ms) | Elapsed Time(ms) | Sum | Elapsed Time(ms)
Local Write Remote Read Remote Pipe

2 bytes 222 10.00 12.22 11.09

128 bytes 3.33 11.80 15.13 11.95

512 bytes 5.83 15.80 21.63 14.81

1024 bytes 8.92 20.50 29.42 18.47

2048 bytes 16.50 37.48 53.98 28.58

Table 4.3 — Comparison of Remote Pipe and File I/O

The MOS kemel treats read and write calls for pipes the same way it handles calls involv-
ing reguiar files. When the linker identifics a remote pipe, the data is encapsulated by the linker
and sent through a funnel to the node which hosts the pipe. The gain in performance over I/O to a
regular filc is explained by the climination of disk 1/O: since the size of a pipe is limited, all of

the data blocks are always in the bufler cache of the local node.

4.4 The Messages IPC Mechanism

A newer IPC mechanism, messages, is a standard feature of AT&T’s UNIX System V.2
systems (see {21] for a detailed explanation). System V messages are a general IPC mechanism:

any two processes can use them to communicate provided they know the key which uniquely
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identifies a queue of messages. The amount of data held in a certain message qucue is limited by
a system defined constant: sending a message to a full queue causes the writer process to receive
an error code unless it specifically requests to sleep on the event of a reader process emplying the
queue. In this way, the regular interface roulines can remain locaticn independent. Since a
reader process has the option of waiting for an empty message queuc to receive data, the message
mechanism can also be used to synchronize processes. In order to allow our of band messages,
messages are tagged with fypes and processes can send cr read messages sclectively from a given

message queue according to type.

4.5. MOS Implementation of Messages

The MOS implementation of the messages mechanism is similar to the AT&T version. In
MOS, each of the message interface routines maps into a single system call entry point. The
parameters of the call are examined to determine which of the routines was called and which
node is the home node of the message qucue being used. The linker thens sets up a funnel for
calls which have message data to transfer and calls the specific routine with its parameters on the
host machine of the message queue. The specific routines executes and places any data into the
funnel. Since the maximum size of the data is limited to a system defined maximum, the body of
a message can always be passed through the funncl in one packet. A message queue can be
migrated from the node of its creation to another machine by use of the msgcd with a MOS

specific argument.

i Size Elapsed Time (ms) | Elapscd Time(ms) E Slowdown

( for Local Write for Remote Write 1 Ratio

il

2 bytes 513 11.85 229

i 128 bytes 6.49 18.41 T 284

| 512 bytes 10,54 21.06 i 200
11024 bytes 1597 2743 | 112 |
. 2048 bytes | 2045 40.42 I 176 )

Table 4.4 - MOS Msg Mcchanism

in MGS, as shown in Tablc 4.4, messages are a hcavier mechanism than pipes. The period
measu:ced stas when the sending process starts sending and ends when the receiving process

receives the Jast message. As with the **heavy'’ system calls measured in Chapter 3, the message

_
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mechanism’s slowdown factor decreases as the size of the message increases. The slowness of
the mechanism, almost twice as slow as the pipe mechanism, is offset by the increase in flexibil-
ity and sophistication that is provides. While the performance of the mechanism may be
improved by eliminating memory copies from user space to kemel space, serious performance
improvements in a general IPC mechanism like System V messages can only be achieved by the
use of dedicated message sending hardware or by the use of a dedicated IPC coprocessor as was
done in {22}.




Chapter §
Networking and Process Migration

5.1. Introduction

Dynamic process migration is one of the unique features of MOS. The MOS load balancing
algorithms [2] use the dynamic migration mechanism to evenly redistribute processes from over-
loaded to less loaded nachines. Distributed applications, like those described in greater detail in
Chapter 6, simply create several subprocesses with the standard UNIX fork mechanism and the
load balancing mechanism sees to the even distribution of the processes throughout the system.
This chapter describes the performance of the funnel mechanism and then the speed of process

migration.

5.2, MOS Networking Mechanisms

In any distributed system, performance is highly dependent on the speed of tiie physical net-
work and the networking protocols implemented. In MOS, the user has no explicit access to the
network. The linker uses the network to implement the following functions: process migration,
funncls and remote kernel procedure calls. The performance of the remote kemnel procedure calls

was described in detail in Chapter 3.

Each of the mechanisms above has a separate impicmentation in the linker which handles
network access. At the level of the linker, the data that necds 1o be transferred is broken into the
appropriaie sized blocks (the current implementation uscs 1.5 Kbyte packets). The data is encap-
sulated into a message of the appropriate type, e.g. input/outpui funnel, various types of process
data or scall. The scparate implementations mean that there is a centain amount of duplication of
code in the linker, but allows the handling of the networking to be tailored for the best perfor-

mance of each type of data.

Tue lowest level of the data transfer is handled by a specific hardware driver, in our casc the
anver for the Pronet hardvrare. The Pronct driver is responsible for sending and receiving ack-
nowicdgements for the messages and guarantees reliabie delivery of the messages. Again, the
sysicin i tadoed to imcrcase performance by using busy waits for small packet sizes and DMA
forarzer packelts,

In general. 2ll of the implementations perform the following fcur steps to transmit data on

NC NCLWOTK
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. A memory to memory copy is used to transfer user data from the user address space to the

kernel space.

. The data and other message related data such as the message headers are copied into the

Pronet hardware's physical memory buffer by a busy wait or a DMA transfer.
. A check sum is performed on the packet.
. The Pronet driver transmits the package over the network.

The reverse process is used by the receiving machine to copy the data from the remote
machine to the local user dato arca. In sum, the optimal transfer rate can be roughly calculated as
the sum of two memory to memory copic. two DMA copies, two check sums and the physical
transmission time over the network. In addition, the amount of time in the upper kemel, context
switching and the time required 1o prepare and send the packet that is required by the linker and
the Pronet driver also have a considerable impact on thic throughput. The speed of the physical
network is determined by the hardware used: the Pronet token passing ring has a throughput of 10
Mbit/second (1,250 Kbytes/second ). The following scctions attempt to measure the effect that

each of the other factors has on the network throughput.

5.3. The Funnel Mechanism

The funnel mechanism typifies the network related mechanisms. Therefore, analysis of the

networking protocols centers on measurements of the data throughput of the funnel mechanism.

For the system call read, an input data funnel is crcated by the upper kemel portion of the
read call. The linker may also crcate a new funnel hefore migrating a process, for example. After
the furinel has been set up, the kemel uses a linker procedure cali to send the data to a waiting

light weight kemel process, an ambassador, which nandles the .cmote end of the transaction.

The following table shows two of the desired measures: the time required for a local
memory to memory copy and the throughput of an input funncl. Both cascs show the mcasured
throughput of the read system cail while reading the MOS pscudo-device, /dev/fun which simply
copics the requested number of bytes {rom an array of rull characters into the funncl. In the local
case, the linker implementation of the funnc! simply performs a memory to memory copy of the
data. In the remoete case, the data is broken into packets of the size that can be sent over the net-
voork wid then sent over the network. The amount of time spent in setting up the system call
should be subtracted from the measured times, e.g. starting with the time that the user level call to

read occurs up 1o the time that the linker starts sending data. Since it is not possible to measure
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this period exactly, the same measurements were taken with all of the calls to the linker
‘‘shorted’’ so that the upper level routines alone are called. Using this figure, the throughput at
the level of the linker can be computed and is given in the fourth row of Table 5.1. A large
30,000 byte buffer size is read from the remote pseudo-file in order to amortize the time spent in

the upper kcmel between a large number of bytes.

Operation Throughput (Kbytes/sec)
Local Memory to Memory Copy 1,163

Network Funncl Throughput 112

Process Migration Throughput 114.77
Network Funnel Throughput w/o Upper Kernel 1159

Network Funnel Throughput w/o Checksum 164

Table 5.1 — Network Throughput

As the Table 5.1 also shows, local memory to memory copics are an order of magnitude
faster than a network rcad. The throughput over the network was 112 Kbytes/second. The last
row shows that compensating for the time spent in the upper kemnel does not have a significant
impact on the throughput, in fact it accounts for only 3 percent of the time spent in the transac-
tion.

One attempt to improve the throughput involved removing the Pronet driver’s checksum
which is done on every message sent. Although the current network hardware requires that the
error checking be donc in software, future generations of hardware will be able to do this by
themselves. An added advantage of not doing a checksum is a reduction in the number of mes-
sage queucs maintained by the Pronet driver (by one). Without the checksum, throughput was
increased to 164 Kbytes/second, an increasc of 46 percent. At this rate, a two machine transac-

tion utilizes 13.12% of the Pronet’s maximum bandwidth,

5.4. Process Migration

The process migration mechanism is built upon the remote kemel procedure call mechan-
ism and the funnel mechanism. Remote procedure calls are used to request that a new procedure
entry is sct up at the remote site and to start exccution of the migrated process on the remote
machine aftcr the migration completes. Funnels are used to transfer the procedure’s text, data

and stack regions. Not surprisingly. the throughiput of process migration is closcly ticd to the per-
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formance of the funnel mechanism: the measured throughput is 114.77 Kbyte /second which is
slightly better than that of the transfer rate of the funnel mechanism. This figure is an important
parameter of the load balancing mechanism: the time it takes to migrate a process is taken into

account when considering the possible benefits of migration.




Chapter 6
Distributed Applications

6.1. Introduction

The botiom line of performance for a distributed system is the performance of the distri-
buted applications that run on the system. In the previous chapters, the slowdown associated with
the various aspects of MOS were measurcd. In this chapter, the speedup of various applications
is measured when they are run on the MOS system. The speedup of a distributed program is
computed as the amount of time the application uses on a one processor system divided by the
amount of t;mc required on a multi-processor sysiem. In the optimal case, a distributed applica-
tion will have a linear spcedup with an increasing number of processors, that is the application

will run Kk times faster on a k-processor system than on a 1 processor system.

In MOS, applications bencfit morc or less from a multi-processor configuration depending
on their nature. This chapter analyzes the performance of applications which are mixed 1/0 and
CPU bound and almost pure CPU bound jobs.

6.2. Parallel Make

Make is a standard UNIX utility which is used to compile and maintain software systems.
Fer large programs, make uses a makefile which lists the source files and the dependencies for
each source file, how to compile the source file into an object file and how to link and load the
nbjzct files. When make is run, it reads the makefile, generates the dependency tree and then
farks a child prccess which executes the next unfulfilled goal, for exainple the compilation of the
aext source file of a software package.

The paralle] version of make which runs on MOS, which allows a user to specify (in the
makefile) which of a goal’s dependencies may be prepared in paralle! and the number of child
nrocesses which should be allowed to run concurrently at any one time. Each of the child
processes runs cither the C compiler, cc, the assembler, as, or the link-loader, 1d. Most of the

subgoals usc the C compiicr, so a short description of the compiler is justified.

‘ihe C compiler is a four pliase compiler. Each instance of the program cc forks to create
ionr chiid processes, each of which runs one of the four phascs of the compilation. Each stage
writes its results into a temporary file in the /tmp directory. In new versions of the C compiler,

pipes are used in place of the temporary files to transfer data between the different subprocesses

1__—_-_




-28 -

that execute the various phases of compilation. Each of the phases of the compilation work in

parallel to a limited extent.

The parallel make was used to compile the kemel of the MOS system which contains
approximately 25,000 lines of code in 60 different source files. Parallel make represents a mixed
I0/CPU bound job since each of the four phases of the compilation reads one source file, com-
putes its stage of the compilation and writes its result into a new file or the final object file. The
parallel version has two scrial phases: the gencration of the dependencies and the linking and

loading of the compiled object files.

Single Machine Compilation

The first run of the parallel make was run on a single MOS node which did not allow
processes to migrate. In Table 6.1 we give results that show as the number of processes
increases, the overall time for the compilation of the kernel decreases since a better utilization of
the CPU is achieved as one compilation uses the CPU while another sleeps on the completion of
an IO request. If the percentage of time that each child process sleeps is great enough, there is lit-
tle contention for the CPU. However, since each of the compilations requires a relatively heavy

amnount of processing the optimal number of processes running in parallel on one machine is low.

Processes | User Time | System Time | Elapsed Time | CPU Utilization
1 622.95 288.10 1161.00 78.00
2 628.60 292.55 1042.00 88.00
3 635.05 296.75 987.00 94.00
4 636.05 298.50 995.50 93.00
5 636.10 302.10 1006.00 93.00
6 645.95 317.30 1031.00 93.00
7 646.80 313.35 1014.50 94.00
8 649.80 323.00 1040.50 93.00
16 658.13 327.28 1056.25 93.00

Table 6.1 — Parallel Make with 1 Processer

The table shows that the parallel make gets a slight speedup as the number of processes
increases to 3 and a slowdown with more than 3 proccsses. In fact, with around 17 processes the
resources of the single machine, e.g. the number of slots in the system’s process table, are

cxhausted and the parallcl make fails. As would be expected, increasing the number of processes
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causes increased context switching between the processes that run concurrently. This in turn
increases the amount the parallel make spends in system mode. A steady increase in the time
spent in user mode was also observed. This is largely a result of the way in which UNIX tumes a
process: one clock tick of time is added to its user mode time if it is running in user mode when
the clock interrupt occurs. This does nol mean that the process was running during the entire
time slice attributed to it: if a system intcrrupt occurs during the previous time slice, the scheduler
is called and may chcose to let a new process run. That has two cflects: charging the time spent
by the precmpted process and the interrupt handling routine against the user time of the process
that is running at the end of the time slice and letting the pre-empted process get a bit of *‘free’’
processing time. On the whelc, the amount of time unjustly charged against processes evens out,
but the interrupt handler’s time ends up being charged, at least in part, as the user time of some

process.

Multiple Machine Compilation
The next benchmark mecasures the specdup gained by Ictting the processes frecly migrate

between two MOS nodes. Table 6.2 shows the results:

f
Processes | User Time | System Time | Elapsed Time | CPU Utilization
1 625.20 287.35 1146.00 79.00
2 631.00 343.90 969.50 100.00
b3 634.00 439.90 851.50 125.50
b4 632.40 463.85 813.00 134.50
s 636.25 484.60 766.50 146.00
6 633.75 491.60 741.50 151.50
7 634.70 516.20 739.00 155.50
8 636.8C 504.25 739.50 153.50
36 | 63690 | 51230 75800 | 15100

Table 6.2 — Paralle] Make with 2 Machines

With two processes running in paralicl, the best speedup relative to the one machine case
hapuened with 9 processes runring in parallel, a speedup of 1.57. Ancther interesting measure of
the paralictism achicved is the CPU utilization which shows the utilization relative to a one pro-

cessor. in the two machine case, the utilization reaches around 156% of a single processor.
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The measured speedup with three and four machines is only slightly better than the two
machine case, due to the high rate of IO that is done with the disk of the host machine of the
parallel make which must handle the processing of the remote 10 requests from all of the other

machines. Table 6.3 shows the results for the 4 machine case.

Processes | User Time | System Time | Elapsed Time | CPU Utilization

1 624.10 275.60 1213.00 73.50

2 631.05 339.50 940.50 103.00

3 633.40 474.75 828.50 133.00

4 637.95 503.20 758.00 150.00

-1 642.00 537.65 732.50 161.00

6 638.05 541.05 697.50 168.50

7 638.45 543.90 686.00 172.00

8 641.35 549.55 667.00 178.00

16 645.55 556.40 698.00 172.00

Table 6.3 — Parallel Make with 4 Machines

Here the best case is with 8 processes running in parallel, only two compilations per node.
The speedup achieved over the 1 machine run was 1.48 while the speedup relative to the best 2
machine run is only 1.09. There are several rcasons for the poor scalability of the parallel make.
Firstly, the amount of IO that is processed by the host machine is an intrinsic bottleneck for a
parallel computation. The second reason for the poor increase in the 4 machine speedup is the
two serial phases of the parallel make itself: the startup phase which generates the dependency
tree and the linking and loading phase. Table 6.4 shows the measured times with these two

phases.

Stage User Time | System Time | Elapsed Time

Startup 15.80 10.13 27.00
Linking | 45.43 27.33 97.60
| Total 61.23 37.46 124.60

Table 6.4 — Timing of the Scrial Phases of Make

If the scrial times are subtracted from the best time for the 1 machine case, the clapsed time for
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the parallel phase is 862.4 seconds. Similarly, the best time with the two and four machine runs
are 603.9 and 542.4 seconds respectively, which is a 1.59 speedup. When measured this way, the
4 machine speedup is around 40% of the optimal speedup of 4.0.

In order to improve the spcedup of the four machine case even further, the C compiler was
changed to randomly choosc one of the four machines as the site of the temporary files that it

creates. Table 6.5 shows the results of this run.

Processes | Uscr Time | System Time | Elapsed Time | CPU Utilization

2 634.25 425.60 928.00 114.00

3 639.05 480.95 753.50 148.50

4 634.25 504.75 643.00 176.50

5 645.15 545.15 628.50 189.00

6 642.30 533.20 569.50 205.50

7 645.60 541.85 544.50 217.50

8 646.60 540.90 512.50 231.00

9 646.55 551.75 508.00 235.50

10 640.43 530.38 486.25 240.25

11 653.55 547.30 489.50 245.00

12 648.72 533.30 462.00 25540

: 16 654.90 573.50 495.50 248.00
Y 663.28 583.38 489.25 254.50
64 663.20 585.30 488.75 255.00

72 663.70 581.20 493.00 252.00

Table 6.5 ~ Make with Four Machines and Random Temporary Files

As the table shows, the best case measurcd took 462 seconds (without the scrial phases,
237.4 scconds). This is a speedup of the parallel phase relative to a 1 machine case of 2.56 which
is (4% =f the optimal and a spcedup relative to the best case from the unmodified make program
of 1.61. A vcry slight improvement is achicved by distributing the source files as well across the

machines, but due to the artificial nature of the method, the results are not included in this report.

T rosults for a run with a random distribution of files across 5 MOS nodes is given in
‘Table ¢.£. This produced a minimum run time of 415.75 scconds (291.15 seconds of parallel
comp..taiim) with the speedup of the parallel phase being 2.96, 59% of the optimal. This is

stightly less than with the four machine percentage due to the preblematics of scaling up an 10

_
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bound application.

Processes | User Time | System Time | Elapsed Time | CPU Utilization

1 628.38 44352 1355.00 78.75

2 643.50 501.58 977.25 117.00

4 644.53 52428 647.00 180.00

8 65140 555.88 495.25 243.25

16 660.30 574.28 432.25 285.25

32 664.88 585.05 420.25 29725

40 666.33 59395 418.75 300.50

50 660.00 57542 415.75 296.75

‘64 665.23 579.37 421.00 295.00

Table 6.6 — Make with Five Machines and Random Files

6.3. A Parallel Version of the Traveling Salesman Problem

The traveling salesman problem requires an extensive tree search of its problem space. The
implementation of the traveling salesman problem [12] that is measured in this section is basi-
cally a CPU bound job with some 10 operations. One master process forks the requested number
of children who then loop endlessly waiting for a message from the master indicating what part of
the problem space they should search. At the end of each stage, each of the children pass back
the two best paths that they find. The retumned paths are sorted by the master process who keeps a
constant number of results best paths (r, determined by a parameter), and uses them as the base
paths for the next stage. The number of stages is equal to the number of cities (n) in the graph.
Since each of the children does a tree search of a fixed depth of four at each stage of the computa-
tion, the complexity of the problem is O(r n sup 5).

Table 6.7 shows an instance of the problem run with 12 cities and 100 results on a single
machine. Unlike the parallcl make measured in the previous scction, no speedup is achieved by
using a number of processcs on one machine since the job is purely CPU bound and the processes

do not often give up the CPU willingly.
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Processes | Uscr Time | System Time | Elapsed Time | CPU Utilization
1 60.9 3.7 65 99
2 63.8 5.0 70 98
' 3 67.6 44 74 97
4 73.0 8.0 91 89
5 73.3 8.0 109 74

Table 6.7 — One Node Traveling Salesman with 12 Cities and 100 Results

Table 6.8 shows the results when the same problem is run on an increasing number of
machines. Since the entire computation finishes in around one minute, the MOS load balancing
mechanism i§ slow to move processes away from the original machine. However, the mechanism
does migrate processes which chronically fork new processes, a heuristic which has the side
benefit of spreading the load quickly between available nodes when a larger number of processes
is used. All in all, this size of problem is not heavy enough to truly benefit from the distributed
nature of MOS and the best speedup obtained is 2.91 on all seven machines, 41% of the optimal

specdup.
Number of Machines | Processes | Elapsed Time | CPU Utilization | Speedup
1 1 65 99 1.0
2 2 44 168 1.48
B 4 6 42 219 1.55
i 7 7 35 288 1.86

Table 6.8 — Traveling Salesman with 12 Cities and 100 Results

Table 6.9, shows the effect of increasing the numbcer of cities to 14 and leaving the number
of results passed between stages at 100. The predicted increase in complexity is 2.15 times. The
2ffect on the one process case shows the elapsed time was 2.28 times the elapsed time for the pre-
vipus casc. a close fit to the complexity predicted above (95%). In this case, the subtasks have

~M12e time to run on the available nodes after migration and the corresponding spcedup obtained

3 3.08, 44% of the optimum.
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Number of Machines | Processes | Elapsed Time | CPU Utilization i Speedup
1 1 148 99 1.0
2 2 89 186 1.66
4 4 58 300 2.55
7 7 48 393 3.08

Table 6.9 — Traveling Salesman with 14 Cities and 100 Results

Table 6.10, shows a run with 24 citics and 200 results, a 64 fold increase in expected run
time. With this example, each subtask runs for a long enough time to dwarf the startup time
required and the time required to pass messages. The speedup measured with all scven machines

is 6.19, 88% of the optimum spcedup possible.

Number of Machines | Processes | Elapsed Time | CPU Utilization | Spcedup
1 1 5462 100 1.0
2 6 2863 197 1.91
4 4 1447 389 3.77
7 7 882 647 6.19

Table 6.10 —- Traveling Salesman with 24 Cities and 200 Results

The utilization of the processors involved also reached 92 percent of the available power. The
cight percent of the combined CPU power that was not utilized can be reduced by changing the
implementation in a way that reduces the time ecach subtask sleeps while awaiting a job assign-
ment from the master process, for example by sending each task all of its jobs in a single message
at the beginning of a computational round. Another way to reduce the unused CPU time is to
manually place the subtasks at a certain node instead of lctting the MOS mechanism distribute
them. With foreknowledge of the length of the computation required for cach of the subtasks, the
initial quantum of processing requircd of a process before it becomes a candidate for migration

can be side-stcpped allowing cach subtask to immecdiately start processing on a different node.

6.4. Conclusions

While the parallel make does not scale up as well as other types of problems due to its 10

bound nature, the speedups gained with 4 and 5 machine configurations of the MOS system is

.——
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quite impressive. A more innovative approach to file 10, such as is suggested in {23], could have
a considerable impact on the parallelization of this type of problem. As a side note, the average
iength of time required for processing of a subgoal was 20.34 seconds while 3 of the subgoals
required more than 65 seconds. Without dynamic process migration, the large deviation from the

average could result in a much poorer speedup.

Tiw traveling salesman problem is more suited to distributed computing than the parallel
arake, but still has some wasted CPU cycles during its message passing phase. While the algo-
rthm can be improved in a few ways, the speedups obtained arc consistenily good with an
nereasing number of nodes, provided the problem is of sufficieni complexity. The percentage of
the opuingl <pecdup decrease slightly as the number of rachines increzsed from Z to 7, frcin 96
percent dowa to 88 percent respectively. This cocld be the sign of a problem with scaling up
some disinnuicd mechanism ¢f the system, but without a much larger number of processors on

which 10 nun icsts it is not possible to determine.




Chapter 7
Conclusions

The purpose of this work was to measure the performance of the MOS multicomputer sys-
tem and several distributed applications. One of the most significant outcomes of this work is
pointing out weak areas of the system and providing suggestions for improvement. The slow-
down factor associated with the remote kernel procedure call *s low when compared with the the
overhead of the Sprite system's remote calls, but there is room for improvement of the implemen-
tation. Firstly, remote calls which use the funnel mechanism should make use of *‘piggyback’’
techniques to transmit the initial funnel data in the initial request packet (or the acknowledgement
packet returmed by the remote node in the case of the remote read). This can reduce the overhead
of calls which involve small amounts of data considerably. Secondly, a further reduction can be
attained by copying the user data directly from uscr space to the network hardware buffers and
visa versa. In this case, the slowdown factor would be reduced for all of the calls which involve

data transfer.

There is room for improvement in the implementation of AT&T’s System V.2 mcssages.
As seen in the mcasurements of the parallcl make, distributing the 10 randomly between
machines brought a significant improvement in the spcedup. Accordingly, disuributing this gen-
eral message passing system should improve the performance of jobs that do heavy message
passing. There arc two problems with a *“distributed’’ V.2 message mechanism: first of all, the
mechanism was designed for a single machine and its namespace is flat, that is each of thc mes-
sage queucs is described by a single integer. This would have to be changed to allow for
specification of the host machine when opening an existing message queue or creating a new one.
The second probiem is one of garbage collection: since the mechanism is a gencral purpose one,
all of the message queues arc left in memory after the demise of the crealing process unlcss
specifically removed. Even for a single machine, this approach can rapidly consume the queucs
if unruly processes do not take carce to remove queues when finished. Since the kemnel has no way
of knowing if a queue is going to be used in the future by a yet uncreated process, it can not per-
form garbage collection on the message queues. Distributing this mechanism only multiplies the
problem. One way of sidc-stepping this problem is to distribute only the ‘‘private’ queucs,
which are removed after the death of the creating process. This type of ricchanism is not as gen-
eral since it allows communication only between parent process and its descendents, but it would

be appropriate {or many types of distributed applications.
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The implementation of the MOS Pronct driver, the lowest level of the networking, could be
improved significantly by removing the checksum done on packets if more sophisticated
hzrdware could be used. Also, the size of the packet passed on the network could be increased
which in order to allow for the ‘‘piggybacking’’ mentioned above. The process migration
mechanism is tightly tied to the iower level mechanisms and would benefit from improvements in

their implementations.

Another outcome of this work is the analysis of the suitability of various distributed appli-
cations to the MOS environment. Not surprisingly, significant speedups are obtained only by
processes which do litde interprocess communication and are at least moderately long lived.
While tirs describes a large class of difficult problems, such as the Traveling Salesman, some
problems, like sorting algorithnis, involve too much IO to obtain really impressive specdups on a
muiti-machine configuration. While the current systcm did not allow testing of algorithms on
more than sevea nodes, the spesdup associated with a the Traveling Salesman increased roughly

linearly with the number of processors.

In conclusion, MQOS was found to provide a reliable and relatively good performance at the
‘evel of the kernel mechanisms and, in the best case, a linear speedup with an increasing number

Of Processors.
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